Copper Sulfate and Other Copper Products

Crops

For Use as Plant Disease Control and For Use as Algicide and Invertebrate Pest Control

1						
2	Identification of Petitioned Substance					
3 4 5 6 7 8 9	Chemical Name: Copper sulfat Other Names: Copper (II) sulfa sulfate, copper sulfate pentahyc bluestone, and blue vitriol.	te, cupric	 16 Other Copper Products: 17 Copper hydroxide. Cuprous oxide. Copper 18 carbonate. Copper ammonium carbonate. 19 Copper oxychloride. Copper octanoate. More 20 copper compounds are given below and listed 21 in "Status." 			
10 11 12 13 14 15 29	Trade Names: Agritox, BSC Co CP Basic Sulfate, TriBasic Copp Triangle Brand Copper Sulfate Diamond Copper Sulphate (Blu many others.	er Sulfate, Crystal,	 23 CAS Number: 24 Listed below. 25 26 Other Codes: 27 Listed below. 28 			
29 30		CAS Number and I	J.S. EPA PC Code	21		
31 32 33	Copper Product	Formula	CAS Number	EPA PC Code	EPA Registered	
34 35	C	Copper Compounds Lis	tod in 40 CEP 18) 10 9 1		
35 36	Basic copper carbonate	Cu(OH) ₂ · CuCO ₃	1184-64-1	022901	Yes	
30 37	Copper ammonium complex	$Cu(NH_3)_4^{2+}$	16828-95-8	022702	Yes	
38	Copper ethylenediamine	$C_2H_8N_2C_u$	13426-91-0	024407	Yes	
39	Copper hydroxide	$Cu(OH)_2$	20427-59-2	023401	Yes	
40	Copper octanoate	$C_{16}H_{30}CuO_4$	20543-04-8	023306	Yes	
41	Copper oxychloride	$Cu_2Cl(OH)_3$	1332-65-6	023501	Yes	
42 43	Copper oxychloride sulfate	$3Cu(OH)_2 \cdot CuCl_2$ + $3Cu(OH)_2 \cdot CuSO_4$	8012-69-9	023503	Yes	
44	Copper salts of fatty and rosin a	. ,	9007-39-0	023104	Yes	
45	Copper sulfate basic	3Cu(OH) ₂ · CuSO ₄	1344-73-6	008101	Yes	
46	Copper sulfate pentahydrate	$CuSO_4 \cdot 5H_2O$	7758-99-8	024401	Yes	
47	Copper oxide (cuprous)	Cu ₂ O	1317-39-1	025601	Yes	
48	Cu-triethanolamine complex	$C_6H_{15}O_3NCu^{2+}$	82027-59-6	024403	Yes	
49 50	Copper ethanolamine complex	$C_2H_7ONCu^{2+}$	14215-52-2	024409	Yes	
51	Other Copper Compounds					
52	Copper oxide(cupric)	CuO	1317-38-0	042401	Yes	
53	Copper ammonium carbonate	$Cu(NH_3)(HCO_3)_2$	33113-08-5	022703	Yes	
54	Copper chloride basic	$3Cu(OH)_2 \cdot CuCl_2$	1332-40-7	008001	No	
55	Copper sulfate (anhydrous)	CuSO ₄	7758-98-7	024408	No	
56	Copper sulfate (monohydrate)	$CuSO_4 \cdot H_2O$	1332-14-5	024402	No	

¹ U.S. EPA PC Code: The Office of Pesticide Programs, U.S. Environmental Protection Agency, assigns a unique six-digit number to a particular pesticide active ingredient or mixture of active ingredients. The U.S. EPA PC (Pesticide Chemical) Code is sometimes referred to as the Shaughnessy Code.

57 **Copper Sulfate and Other Copper Products:** 58 59 The Federal Insecticide, Fungicide and Rodenticide Act (FIFRA) was amended in 1988 to accelerate the 60 reregistration of products with active ingredients registered prior to November 1, 1984. On August 3, 1996, the Food Quality Protection Act of 1996 (FQPA) was signed into law. This Act amends FIFRA and the 61 Federal Food, Drug and Cosmetic Act (FFDCA) to require reassessment of all existing tolerances for 62 63 pesticides in food. FQPA also requires EPA to review all tolerances in effect on August 2, 1996, by August 3, 2006. 64 65 66 The U.S. Environmental Protection Agency (U.S. EPA) completed the "Coppers Reregistration Eligibility 67 Decision (RED)" in July 2006 and published it in August 2006. This 2006 version was revised and 68 published in May 2009 as the "Reregistration Eligibility Decision (RED) for Coppers - Revised May 2009" (hereafter referred to in this document as RED-Cu, 2009). RED-Cu (2009) incorporated public comments 69 70 received after its 2006 version was published, reflected the latest status of the Office of Pesticide Programs 71 initiatives (namely, the Endangered Species Program), updated the list of copper compounds technical 72 registrants to reflect the latest companies which regain copper-containing technical registrations, and 73 considered other decisions that occurred after the 2006 version was published.

74

75 This 176-page RED-Cu (2009) included chemical overview; copper risk assessments; risk management,

76 reregistration, and tolerance reassessment decision; and registrant's responsibilities. RED-Cu (2009)

77 assessed human health effects resulted from both agricultural and antimicrobial applications of copper-

78 containing products. RED-Cu (2009) assessed ecological effects resulted from agricultural applications 79 only but not from antimicrobial applications of copper products.

80

81 Copper sulfate and other copper products given above actually are examples of copper products listed in 82 RED-Cu (2009). As given in Table 3 (Copper compounds subject to reregistration) of RED-Cu (2009), more

83 than 30 copper compounds were addressed, in the categories of copper sulfates, group II copper

84 compounds, copper and oxides, copper salts, and other copper compounds. RED-Cu (2009) indicated that

85 "agricultural copper pesticides are formulated using various forms of copper, which ultimately dissociates

into the cupric ion, the active component of concern," and "although there are several forms of copper-86

- 87 containing active ingredients under review, the active component of toxicological interest is the cupric
- 88 ion." For simplicity, copper sulfate will be used to represent copper sulfate and other copper products in
- 89 this technical report, unless specifically noted. 90

91 **Previous Technical Reports:**

92 93 1995 Technical Advisory Panel (TAP) Review - #5 Coppers, Fixed.

94 2001 Crops - For use as algicide and invertebrate pest control (Copper Sulfate, 2001).

Characterization of Petitioned Substance

98 **Composition of the Substance:**

99

97

95 96

100 Copper sulfate, or cupric sulfate, exists as compounds with a different degree of hydration: $CuSO_4 \cdot nH_2O$.

Copper oxide (CuO), or Cu(II), differs from cuprous oxide (Cu₂O), or Cu(I), by copper's oxidation status. 101

102 Copper oxychloride is a compound with the chemical formula of CuCl₂·3Cu(OH)₂. Copper octanoate is the copper salt of octanoic acid which is an eight-carbon saturated fatty acid known by a common name of

- 103
- 104 caprylic acid. 105

106 **Properties of the Substance:**

107

108 The anhydrous form of copper sulfate (CuSO₄) is gray-white to pale green-white granules or powder or

109 just white rhombic crystals, odorless, air sensitive, very water soluble, slightly soluble in methanol,

insoluble in ethanol, and nonvolatile. The commonly encountered copper sulfate is the pentahydrate form 110

(CuSO₄ · 5H₂O) granules, or powder, or crystals with bright blue color, and is hygroscopic² (Merck, 1960;
 MSDS-Copper Sulfate 1; Hebert, 1993). A common natural mineral of pentahydrate copper sulfate is
 chalcanthite.

114

116

- 115 Copper hydroxide, Cu(OH)₂, is a pale blue, gelatinous solid.
- 117 Copper oxide (CuO), or cupric oxide, is a black solid. Cuprous oxide (Cu₂O) is a red-colored solid or
- powder and quickly changes to copper oxide in moist air. A natural mineral of cuprous oxide is the reddish mineral cuprite.
- 119 120

121 Copper oxychloride, $CuCl_2 \cdot 3Cu(OH)_2$, is a blue to green odorless powder (MSDS-Copper Oxychloride).

122

123 The commercial product of copper octanoate is a liquid (MSDS-Copper Octanoate). "Copper octanoate 124 degrades to form free copper and the organic ligand octanoic acid. The free copper and native copper are 125 indistinguishable and behave similarly in the natural copper cycle" (US EPA-Copper Octanoate).

126

Table 4 (Copper chemical properties) of RED-Cu (2009) described the chemical properties of other coppercompounds.

129

130

131 <u>Specific Uses of the Substance</u>:132

Copper compounds are used as fungicides, algicides, herbicides, a source of copper in animal nutrition, and as fertilizers. They are also used to kill slugs and snails in irrigation and municipal water treatment systems (Kamrin, 1997). In 2001, an additional petition to expand the use of copper sulfate for use as an algicide and to control invertebrates, specifically tadpole shrimp³ in rice production was submitted to the National Organic Program (McElroy, 2001). This petition was approved by the National Organic Standards Board (NOSB).

139

140 Non-agricultural uses include germicide, textile mordant, leather industry, pigments, electric batteries,

141 electroplating coatings, copper salts, reagent in analytical chemistry, medicine, wood preservative, process

142 engraving and lithography, ore flotation, petroleum industry, synthetic rubber, steel manufacture, and

143 treatment of natural asphalts.

³ The following is quoted from Godfrey and Espino (1999): "Tadpole shrimp: Although they are crustaceans, tadpole shrimp resemble tadpoles in size, shape, color, and mobility. Adults deposit eggs singly on soil or on plants at the bottom of the field. They are highly resistant to drying and remain viable for several years in unflooded soil. Most of the eggs hatch 1 to 3 days after spring flooding of the rice fields, but hatching may continue for 1 to 2 weeks. The young develop rapidly by a series of molts and resemble the adults in less than 24 hours. They feed on a variety of small animals and plants commensurate with their size as they grow and molt. The somewhat transparent molt skins may be mistaken for dead shrimp. Tadpole shrimp cause losses in seedling rice stands in two ways. First, they may chew off the coleoptiles, roots, and leaves of the seedling, and uproot seedlings with their digging and feeding activity, all of which may kill the plants. Second, their digging activities associated with egg laying muddy the water, reducing light penetration and thereby slow the growth of the submerged seedlings. Tadpole shrimp cause no injury to rice once leaves have reached the water surface and roots are well established in the soil."

² Hygroscopy is the ability of a substance to attract water molecules from the surrounding environment through either absorption or adsorption.

145 Detailed description of use profile was provided from p. 18 to p. 21 and in Appendix A (Copper refined actual use rates for crops) of RED-Cu (2009). "Copper is a broad-spectrum fungicide, bactericide, aquatic 146 147 herbicide, algaecide and molluscicide for use on a variety of agricultural crops, ornamentals and turf," (RED-Cu, 2009). The maximum annual application rate for tree fruit and tree nuts was less than 20 lb Cu²⁺ 148 A-1 except the application rates for papaya (21.2 lb A-1), filbert (24 lb A-1), walnut (32 lb A-1) and mongo 149 (48.0 lb A⁻¹). The maximum annual application rates were also listed for "field crops," "small fruits," 150 "vegetable", "vines," "ornamentals," and "miscellaneous." The maximum rate per application was from 151 152 0.4 to 2.5 ppm for direct aquatic uses. 153 154 RED-Cu (2009) also provided estimated usage of copper pesticides. The EPA's Screening Level Usage 155 Analysis (SLUA) for copper hydroxide on 55 crops, and for copper sulfate pentahydrate on 47 crops was listed (p. 21 of RED-Cu, 2009). "The CSTF⁴ estimated that 9-11 million pounds of elemental copper in the 156

form of copper sulfate pentahydrate are applied each year solely for algae and weed control. Applied
Biochemists Company estimates that 300,000 pounds of elemental copper in various forms of complexed
copper compounds are applied annually for algae and weed control," (RED-Cu, 2009). Several largest
applications were oranges, walnuts, and grapefruit, almonds, tomatoes and grapes.

161

162 Approved Legal Uses of the Substance:

163164 See below in "Status".

165

166 Action of the Substance:

167 168 The toxic action of copper is attributed to its ability to denature cellular proteins and to deactivate enzyme 169 systems in fungi and algae. The mode of action might be that cupric ions bind to various groups including 170 sulfidal groups, imidazoles, carboxyls, phosphate groups and thiol groups, and this binding causes non-171 specific denaturing of proteins and cell leakage (Caldwell et al., 2006; RED-Cu, 2009). With respect to 172 mollusks, copper might disrupt peroxidase enzymes and affect the functioning of the surface epithelia 173 (RED-Cu, 2009).

- 174
- 175 176

177

182

Status

178 Historic Use by Organic Growers:

179180 Copper sulfate historically has been widely used for plant disease control, and permitted by U.S. certifiers.181

183 U.S. Department of Agriculture:

184

185 Copper sulfate and copper products are listed in several sections of the National Organic Standards as186 given below:

187

188 7 CFR § 205.601 Synthetic substances allowed for use in organic crop production.

189

190 (a) As algicide, disinfectants, and sanitizer, including irrigation system cleaning systems.

(3) Copper sulfate – for use as an algicide in aquatic rice systems, is limited to one application per
 field during any 24-month period. Application rates are limited to those which do not increase

⁴ CSTF: In support of the agricultural uses of copper, the Copper Sulfate Task Force (CSTF) was formed in 1986 to represent the interest of several registrants. There were 17 members in CSTF, as given in RED-Cu (2009).

Technical Evaluation Report	Copper Sulfate	Crop Production
baseline soil test values fo certifying agent.	r copper over a timeframe agreed upon by	v the producer and accredited
application per field durir	e as tadpole shrimp control in aquatic rice ng any 24-month period. Application rates est values for copper over a timeframe agr	are limited to levels which do
exempted from EPA tolera	er hydroxide, copper oxide, copper oxychlo ance, <i>Provided</i> , That, copper-based materia ion in the soil and shall not be used as her	ls must be used in a manner
(2) Copper sulfate – Substation Substation States (2) Copper sulfate – Substation States (2) States	ance must be used in a manner that minim	nizes accumulation of copper in
or chlorides are not allowe	be used as a defoliant, herbicide, or desice ed. Soil deficiency must be documented by nates, oxides, or silicates of zinc, copper, in palt.	v testing.
7 CFR § 205.603 Synthetic substa	nces allowed for use in organic livestock	c production.
(b) As topical treatment, external p (6) Copper sulfate.	parasiticide or local anesthetic as applicabl	e.
U.S. Environmental Protection Ag	<u>gency:</u>	
Sulfate and Other Copper Product	ompounds are registered as pesticides. As s," US EPA evaluated the use of copper co ty Decision (RED) for Coppers – Revised N	ompounds as pesticides and
concluded that EPA had sufficient uses only) and determined the rere agricultural uses, provided that th label amendments were made to r	ration, and Tolerance Reassessment Decisi information on the human health and eco egistration eligibility for copper-containing e risk mitigation measures outlined in REI eflect those measures. The "agricultural u and urban uses of copper products.	blogical effects (agricultural g products to be used for D-Cu (2009) were adopted and
	V Risk Management, Reregistration, and To ed decisions on the following items:	olerance Reassessment
a. Risk Determinationb. Determination of	Safety to U.S. Population Safety to Infants and Children	
	er compounds are low (Hebert, 1993). In f ilation "40 CFR 180.136" was about the "3	

248 basic copper carbonate in or on pears of combined copper from post-harvest, and old regulation "40 CFR 249 180.538" was about the "1 ppm tolerance for copper residues in potable water." 250

251 More copper compounds are added to "Table 25. List of Copper Compounds to Address under 40 CFR §180.1021(4)(b)" as it is given below. Details are given in RED-Cu (2009). 252

Chemical Name	EPA PC Code	C.A.S. Number	Comments
Basic Copper Sulfate	008101	1344-73-6	No change
Copper Sulfate Pentahydrate	024401	7758-99-8	Needs to be added
Copper Chloride	008001	1332-40-7	No change
Copper Ammonium Carbonate	022703	33113-08-5	Needs to be added
Basic Copper Carbonate	022901	1184-64-1	No change
(malachite)			0
Copper Hydroxide	023401	20427-59-2	No change
Copper Oxychloride	023501	1332-65-6	Needs to be added
Copper Oxychloride Sulfate	023503	8012-69-9	Needs to be added
Copper Ammonia Complex	022702	16828-95-8	Needs to be added
Copper in the form of chelates	024405	10402-15-0	Needs to be added
of citrate and gluconate			
Cuprous Oxide	025601	1317-39-1	No change
Copper Salts of Fatty and	023104	9007-39-0	Needs to be added
Rosin Acids			
Copper Ethylenediamine	024407	13426-91-0	No change
Complex			0
Copper Octanoate	023306	20543-04-8	No change
			0
	<u>Copper Co</u>	ompounds to Remo	<u>ve</u>
Cupric Oxide	042401	1317-38-0	Remove; no currently
1			registered food uses.
Copper oleate	023304	10402-16-1	Remove; this compound
			was cancelled.
Copper linoleate	023303	7721-15-5	Remove; this compound
			was cancelled.
Bordeaux Mixture	None	None	Remove; active ingredient
			copper sulfate, which
			is already included.
Copper Lime Mixtures	None	None	Remove; active ingredient
			copper sulfate, which
			is already included.

293 After the two old tolerance regulations are revoked, several copper compounds are added, and several 294 other copper compounds are removed, as given above in "Table 25," tolerance exemptions for residues of 295 copper in/on plant, animal and processed commodities are established under 40 CFR180.1021. The latest 40 CFR 180.1021 is presented below. 296

298

297

299

40 CFR 180.1021 (Copper; exemption from the requirement of a tolerance

(a) Copper is exempted from the requirement of a tolerance in cattle, meat; goat, meat; hog, meat; 300 horse, meat; sheep, meat; milk, poultry, fat; poultry, meat; poultry, meat byproducts; egg, fish, 301 302 shellfish, and irrigated crops when it results from the use of:

303			
304		(1) Copper sulfate as an algicide or herbicide	in irrigation conveyance systems and lakes, ponds,
305		reservoirs, or bodies of water in which fish	
306			lgicide or herbicide in impounded and stagnant
307		bodies of water.	
308			ethanolamine as an algicide or herbicide in fish
309		hatcheries, lakes, ponds, and reservoirs.	entatolatime as an argiciae of herbiciae in tish
310			s for control of algae or other coatings for control of
311		algae or other organisms on submerged co	
312		algae of other organisms on submerged co	site of other (inigation) structures.
313	(b)	The following conner compounds are event	from the requirement of a televance when applied
	(D)	0 11 1 1	from the requirement of a tolerance when applied
314		(primarily) as a fungicide to growing crops usi	ing good agricultural practices:
315		Company company do	CAS Deg No
316		Copper compounds	CAS Reg. No.
317		Basic copper carbonate (malachite)	1184-64-1
318		Copper ammonia complex	16828-95-8
319		Copper ethylenediamine complex	13426-91-0
320		Copper hydroxide	20427-59-2
321		Copper octanoate	20543-04-8
322		Copper oxychloride	1332-65-6
323		Copper oxychloride sulfate	8012-69-9
324		Copper salts of fatty and rosin acids	9007-39-0
325		Copper sulfate basic	1344-73-6
326		Copper sulfate pentahydrate	7758-99-8
327		Cuprous oxide	1317–19–1
328		cupious onlice	
329	(c)	Copper sulfate pentahydrate (CAS Reg. No. 77	758_{99} is even tfrom the requirement of a
330	(C)		ing crops or to raw agricultural commodities after
331			
			n meat, fat and meat by-products of cattle, sheep,
332			when applied as a bactericide/fungicide to animal
333		premises and bedding.	
334	(1)		
335	(d)		9–2) is exempt from the requirement of a tolerance
336			cultural commodities as an inert ingredient (for pH
337		control) in pesticide products.	
338			
339			
340	<u>U.S. Fo</u>	od and Drug Administration:	
341			
342	There a	re a number of copper compounds listed in the	code of federal regulations, Title 21, Food and
343	Drugs,	which are regulated by the U.S. Food and Drug	Administration. The allowable level of copper in
344	drinkin	ng water is 1.0 mg L ⁻¹ (21 CFR 165.110). Copper	sulfate is also a direct food substance affirmed as
345		lly recognized as safe (GRAS) (21 CFR 184.1261)	
346	0		
347	Interna	itional:	
348			
349	CODE	X – Copper in the form of copper hydroxide, co	oper oxychloride, (tribasic) copper sulfate, cuprous
350		Bordeaux mixture and Burgundy mixture are lis	
351		ë ;	plant pest and disease control) of "Guidelines for the
352			anically produced foods" (CODEX-GL 32, 1999).
353	Produc	tion, processing, abening and marketing of orge	ancuny produced roods (CODEA-OE 52, 1999).
	CODE	V The proposed addition of compare extensions	to Table 2 in Annow 2 of "Cuidalings for the
354		K – The proposed addition of copper octanoate t	
355			anically produced foods" (CODEX-GL 32, 1999) was
356			the United Nations in May 2010 (CODEX-CX/FL
357	10/38/	1, 2010).	

358 Annex II.

- Copper in the form of copper hydroxide, copper oxychloride, (tribasic) copper sulphate, cuprous oxide, copper octanoate: Fungicide. Up to 6 kg copper per ha per year. For perennial crops, Member States may, by derogation from the previous paragraph, provide that the 6 kg copper limit can be exceeded in a given year provided that the average quantity actually used over a 5-year period consisting of that year and of the four preceding years does not exceed 6 kg.
- European Union: European Union's regulation on organic production and labeling of organic products was
 published (EU-834/2007). The detailed rules for organic production and labeling were revised in
 September 2008 (EU-889/2008).
- 368
- European Union: Copper octanoate (cupric salt of fatty acid) for organic food production was amended
 into Annex II of Commission Regulation (EEC) No 2092/91 (EU-404/2008).
- 371

Canada: Health Canada published a 47-page report of "Proposed re-evaluation decision – Copper
pesticides" in 2009 (Copper Pesticides). Its primary status is very similar to US EPA's RED-Cu (2009), as it
is stated in the document: "This program relies as much as possible on foreign reviews, typically United
States Environmental Protection Agency (USEPA) Reregistration Eligibility Decision (RED) documents,"
and "Copper is unlikely to affect non-target organisms when used according to the revised label

- 377 directions."
- 378
- 379

Evaluation Questions for Substances to be used in Organic Crop or Livestock Production

380

381Evaluation Question #1: (A) Does the substance contain an active ingredient in either of the following382categories: copper and sulfur compounds, toxins derived from bacteria; pheromones, soaps,

383 horticultural oils, fish emulsions, treated seed, vitamins and minerals; livestock parasiticides and

medicines and production aids including netting, tree warps and seals, insect traps, sticky barriers, row

covers, and equipment cleansers? (B) Does the substance contain synthetic inert ingredients that are not
 classified by the EPA as inerts of toxicological concern (i.e., EPA List 4 inerts)? (7 U.S.C. §

- 6517(c)(1)(B)(i)). Does the synthetic substance contain inert ingredients which are not on EPA List 4, but
 are exempt from a requirement of a tolerance, per 40 CFR part 180?
- 389

390 The substance copper, addressed in RED-Cu (2009), consists of copper sulfate and its relevant hydrates,

- group II copper compounds (such as copper chloride, copper hydroxide, and copper oxychloride), copper
 oxides (such as cuprous oxide), copper metal (for antimicrobial uses only), copper salts (such as copper
 salts of fatty and rosin acids), and other copper compounds (such as copper octanoate). Octanoate actually
 is one of the copper salts of fatty acids.
- 395

Copper sulfate, CuSO₄, contains sulfur. A common natural mineral of pentahydrate copper sulfate is
 chalcanthite. Copper octanoate is also considered a "soap".

398

These copper compounds may be used "as is" without additional synthetic inert ingredients. Some formulated pesticide products may contain inert ingredients, in addition to copper as the active ingredient.

- 400 401
- 402 <u>Evaluation Question #2:</u> Discuss whether the petitioned substance is formulated or manufactured by a 403 chemical process, or created by naturally occurring biological processes. (7 U.S.C. § 6502 (21)
- 404

As a pesticide, the substance copper refers to a group of copper compounds which could be manufacturedor created in different ways from different sources.

407

408 Commercially, copper sulfate may be manufactured by dissolving scrap copper in hot concentrated

- 409 sulfuric acid (Pimentel, 1981). It is not a simple dissolution like sugar dissolving in water. This
- 410 "dissolving" is a chemical reaction in which copper metal is oxidized to cupric ions. Copper sulfate may

411 412	also be the by-products from processing copper ores, which are electro-refined or electrolytically processed to produce copper metal.
 413 414 415 416 417 418 419 420 	Copper (II) hydroxide may be produced by mixing copper sulfate with sodium hydroxide. The solubility of copper hydroxide is much less than that of copper sulfate. When copper sulfate and sodium hydroxide are mixed, copper hydroxide is preferentially produced and precipitated out of solution. The copper in copper sulfate and in copper hydroxide is still cupric copper. Alternatively, copper hydroxide is manufactured by the electrolysis of water where copper metal is used as the anode. In this case, copper metal is converted to cupric ions in an electrochemical reaction.
421 422 423 424 425 426 427	Natural mineral chalcanthite is pentahydrate copper sulfate, and natural mineral hydrocyanite (Kirk- Othmer, 1982) is anhydrous copper sulfate. Copper (II) hydroxide is found in several natural minerals: azurite, malachite, antlerite, and brochantite. These naturally-occurring minerals potentially may be made into algicide or similar after proper processing such as breaking and grounding. However, natural minerals apparently contain more materials, such as several other heavy metals, than just copper compounds.
427 428 429 430 431	The pentahydrate salt can be dehydrated to the intermediate hydrates and the anhydrous salt. After dehydration, the chemical properties of anhydrous copper sulfate are not different from that of pentahydrate salt. Dehydration is not necessarily a chemical process.
432 433 434 435	Copper octanoate commercially is made into two copper soaps. These copper soaps are manufactured by combining a soluble copper fertilizer with a naturally-occurring fatty acid (US EPA-Copper Octanoate). Octanoic acid is readily found in coconut oils.
436 437 438 439 440	<u>Evaluation Question #3:</u> Describe the most prevalent processes used to manufacture or formulate the petitioned substance. Further, describe any chemical change that may occur during manufacture or formulation of the petitioned substance when this substance is extracted from naturally occurring plant, animal, or mineral sources. (7 U.S.C. § 6502 (21))
441 442 443 444 445 446	As mentioned in Question #2, copper sulfate pentahydrate is the most widely used form. Copper sulfate is often "the starting raw material for the production of many of the other copper salts. Today in the world there are more than 100 manufacturers and the world's consumption is around 200,000 tons per annum of which it is estimated that approximately three-quarters is used in agriculture, principally as a fungicide," according to the Copper Development Association Inc ⁵ (Copper.ORG, 2010).
447 448 449 450 451 452 453 454 455	According to (Copper.ORG, 2010), "in the production of copper sulphate virgin copper is seldom, if ever, used as the starting raw material. Copper ores are used in countries where these are mined. For the bulk of the world's production nonferrous scrap is the general source. The scrap is refined and the molten metal poured into water to produce roughly spherical porous pieces about the size of marbles which are termed 'shot'. This shot is dissolved in dilute sulphuric acid in the presence of air to produce a hot saturated liquor which, if the traditional large crystals of copper sulphate are required, is allowed to cool slowly in large cooling vats into which strips of lead are hung to provide a surface for the crystals to grow on. If the granulated (snow) crystal grades are desired, the cooling process is accelerated by agitating the liquor in water cooled vessels." In this process, the main chemical change is the oxidation of copper metal (the shot),
455 456	Cu(0), to cupric ions, Cu(II).

⁵ Copper.ORG (2010) claims that the Copper Development Association Inc. is "the market development, engineering and information services arm of the copper industry, chartered to enhance and expand markets for copper and its alloys in North America."

458 459 460 461 462 463 464	Alternatively, "other methods of production are: by heating copper scrap with sulphur to produce copper sulphide which is then oxidised to form copper sulphate, by heating copper sulphide ores to produce copper oxide which is then treated with sulphuric acid to form copper sulphate, and by slow leaching in air of piles of low grade ore (Bacterial action is sometimes employed to hasten the process. A solution of copper sulphate drains away from such heaps)" (Copper.ORG, 2010). These processes are common chemical changes of inorganic oxidations and reductions.
465 466	<u>Evaluation Question #4:</u> Describe the persistence or concentration of the petitioned substance and/or its by-products in the environment. (7 U.S.C. § 6518 (m) (2))
467 468	Concentration of Copper in Soil
469 470 471	Total Copper and Bio-available Copper: Copper is one of the minor elements found ubiquitously in natural environments. Its average concentration in the earth's crust is 58 mg kg ⁻¹ (Frank et al., 2005). Since copper
472 473 474 475 476	held within aluminum-silicate minerals is not available to plants or not toxic to microorganisms, the leachable or bio-available copper ⁶ is pertinent to environmental issues such as toxicity or other ecological effects. The bio-available copper is one fraction of total copper in soil, but is referred as the "copper in soil."
477 478 479 480 481 482 483	Operationally Defined Copper in Soil: Total copper in a soil sample is not variable. Its concentration is the same, no matter how or where the soil sample is analyzed, at least conceptually. This bio-available copper is variable. The concentration of "copper in soil" depends on how copper is leached out of soil and measured, since the leaching solutions can be water only, 1 mol L ⁻¹ potassium acetate, concentrated nitric acid, or other leaching solutions (e.g. Bogomolov et al., 1996; Gremion et al., 2004). A "water extraction at room temperature" is a weak extraction while an "extraction with concentrated nitric acid at raised temperature" is a strong extraction.
484 485 486 487 488 489 490 491 492	Concentration of Copper in Soil: In Europe, copper in soil has been reported at 5-30 mg kg ⁻¹ in general cropland, and 100-1,500 mg kg ⁻¹ in vineyards (Besnard et al., 2001). US soils contain 6 to 65 mg kg ⁻¹ of copper (Besnard et al., 2001). The average concentration of copper is 37 mg kg ⁻¹ in California and about 16 mg kg ⁻¹ in the US soils (Holmgren et al., 1993). At the Pike Hill Copper Mine Superfund site (Orange Country, Vermont, USA) where copper ore was mined, concentrations of copper in surrounding areas were as high as 559 mg kg ⁻¹ (Piatak et al., 2007). The background concentrations of copper in Ontario soils commonly average less than 25 mg kg ⁻¹ , but can contain copper levels as high as 85 mg kg ⁻¹ (Ontario, 2001)
493 494	Persistence of Copper in Soil
495 496 497 498 499	Because copper sulfate is highly water soluble, it is considered one of the more mobile metals in soils. However, because of its binding character, its leaching potential is low in all but sandy soils. In anoxic environment where sulfide exists, copper may precipitate as copper sulfide which is very insoluble and fixed to sediment.
500 501 502 503	When applied with irrigation water, copper sulfate does not accumulate in the surrounding soils. Some (60%) is deposited in the sediments at the bottom of the irrigation ditch, where it becomes adsorbed to clay, mineral, and organic particles. Copper compounds also settle out of solution (Kamrin, 1997).
503 504 505 506 507 508	Copper may be chelated by soil organic substances, and becomes less available to crops when organic matter is increased. Addition of organic matter has been shown to prevent erosion, and retain copper in vineyard soils (Besnard et al., 2001). Soil pH affects the availability of copper, which decreases at higher pH in calcareous soils (Andreu and Gimeno-Garcia, 1999).

⁶ Bio-available copper, within this context, is the portion of copper which can be taken up into plants or affect microorganisms.

509 510	Soil erosion in hilly vineyard situations created a potential for contamination of water quality (Besnard et al., 2001).
511 512 513	Copper is a metal that has a potential to build up and decrease the productivity, filtering capacity, and buffering capacity of soil (Andreu and Gimeno-Garcia, 1999). This may be more of a concern in fragile
514	ecosystems such as marsh or wetlands than rice crops. When metals such as copper are applied to the soil
515	they may: (a) remain in soil solution and run off in drainage water, (b) be taken up by plants, or (c) be
516	retained by soil in soluble or insoluble forms. In a system that is seasonally wet and dry, there is
517	continuous change in the availability of metals due to cycles of aerobic and anaerobic conditions affecting
518	the soil redox potential. This may make such soils more vulnerable to enhanced solubility and toxicity of
519 520	metals (Andreu and Gimeno-Garcia, 1999). Of the metals, copper is relatively more mobile (extractable) than cadmium, lead, zinc, nickel, or cobalt, but even so is retained in the soil for very long time periods. In
521	a study that sampled the same site over a five-year period in a rice growing region of Spain, it was found
522	that copper does, however, gradually decrease over time, unlike cadmium that has shown a tendency to
523	increase (Andreu and Gimeno-Garcia, 1999). Copper is found in the upper levels of the soil profile, and
524	decreases with depth.
525	
526	The environment fate of copper is further discussed in Question 9.
527	
528	Factors Affecting Copper in Soil
529	
530	Copper in a specific location greatly depends on the bedrock composition, weathering extent, and
531	agricultural operations (crop rotation, fertilizer application, pesticide application, irrigation, crop harvest,
532	etc). Copper levels in soils studied in Italy were found to be closely correlated to agricultural use
533	(Facchinelli et al., 2000). An application of 10 lb A-1 of copper sulfate pentahydrate, which is 25% copper as
534	the active ingredient, would add 2.5 lb A ⁻¹ of copper (Besnard et al., 2001; Gimeno-Garcia et al., 1996).
535	Grape producers may apply 3-10 application per year of Bordeaux mix. Vineyard soils in Europe, which
536	have seen intensive use of copper sulfate containing Bordeaux mixtures for 100 years, have concentrations
537	ranging from 100-1,500 mg/kg in soil (Besnard et al., 2001).
538	
539	Evaluation Question #5: Describe the toxicity, mode of action and breakdown products of the
540	petitioned substance any known toxic or other adverse action of the substance and/or its breakdown
541 542	products. (7 U.S.C. § 6518 (m) (2))
542 543	Copper is an element, it cannot break down any further via hydrolysis, metabolism, or any other
545 544	degradation processes (RED-Cu, 2009).
545	degradation processes (RED-Cu, 2009).
546	"Products containing certain copper compounds can cause severe eye, dermal, or inhalation irritation if
547	exposed to the handler and/or applicator of that product," according to U.S. EPA (RED-Cu, 2009). U.S.
548	EPA "has reviewed all toxicity studies submitted for copper and has determined that the toxicological
549	database is sufficient to assess the hazard from pesticides containing copper" (RED-Cu, 2009).
550	
551	Acute Toxicity
552	
553	The previous technical report (Copper Sulfate, 2001) discussed the acute toxicity of copper products.
554	
555	The section "Toxicity Summary for Copper" in "III Summary of Coppers Risk Assessment" of RED-Cu
556	(2009) indicated that humans have homeostatic capabilities to regulate copper in the system, "copper
557	generally has low acute toxicity," and "there is no evidence of copper or its salts being carcinogenic."
558	Endpoints were not established to quantify any potential risks from exposure to copper (RED-Cu, 2009).
559	
560	Table 5 of RED-Cu (2009) listed the "Available Acute Toxicity Studies on Copper-Containing Compounds".
561	Twenty-two copper containing compounds were listed against the items of "Acute Oral LD_{50} ", "Acute
562	Dermal LD ₅₀ ", "Acute Inhalation", "Primary Eye Irritation", "Dermal Irritation", and "Dermal
563	Sensitization". For example, the values for copper sulfate pentahydrate are: 450-790 mg kg ⁻¹ (Acute Oral

564 565 566 567	LD_{50}), > 2000 mg kg ⁻¹ (Acute Dermal LD_{50}), none available (Acute Inhalation), severe eye irritation day 1 to day 21 (Primary Eye Irritation), and non-irritating (Dermal Irritation). Nothing is listed for "Dermal Sensitization". Table 5 was summarized in RED-Cu (2009) as:
568 569 570 571 572	"Copper generally has moderate to low toxicity (Toxicity Category II, III and IV) ⁷ based on acute oral, dermal and inhalation studies in animals. However, available studies indicate that some copper species may cause severe irritation (Toxicity Category I), such as copper sulfate pentahydrate, cuprous oxide, and copper 8-quinolinolate."
 572 573 574 575 576 577 578 579 	"All effects resulting from acute exposure to these copper-containing pesticides are due to acute body responses to minimize excessive absorption or exposure to copper. Given the role copper plays as an essential element to the human body, its ubiquitous nature in food and drinking water, the long-standing tolerance exemptions for the pesticidal use of copper on growing crops, as well as on meat, milk, poultry, eggs, fish, shellfish, and irrigated crops, and the lack of systemic toxicity resulting from copper, a quantitative acute toxicity assessment was not conducted for acute dietary, dermal, oral or inhalation exposures.
580 581 582	Current available data in animals do not show any evidence of upper limit toxicity level that warrant determining acute toxicity endpoints."
583 584	Sub-chronic and Chronic Toxicity
585 586 587	The previous technical report (Copper Sulfate, 2001) discussed the sub-chronic and chronic toxicity of copper products.
588 589 590 591 592 593 594	RED-Cu (2009) concluded that "based on available data, there is no evidence that warrants determining any dietary, oral, dermal or inhalation endpoints to quantify sub-chronic and chronic toxicity." Further, after providing some rational, RED-Cu (2009) indicated that "available reproductive and developmental studies by the oral route of exposure generally indicate that the main concern in animals for reproductive and teratogenic effects of copper has usually been associated with the deficiency rather than the excess of copper. Current available data in animals do not show any evidence of upper limit toxicity level that warrant determining chronic toxicity endpoints for any potential routes of exposure."
595 596 597	<u>Evaluation Question #6:</u> Describe any environmental contamination that could result from the petitioned substance's manufacture, use, misuse, or disposal. (7 U.S.C. § 6518 (m) (3))
598 599 600 601 602 603 604 605	As given Question #4, copper exists ubiquitously in natural environment. "Although copper pesticides have been used for over one hundred years and several million pounds of copper are applied each year, there are relatively few reported incidents associated with copper compounds," (RED-Cu, 2009). The section of "Ecological Incidents" in "III Summary of Coppers Pesticides" of RED-Cu (2009) discussed 24 incidents related to copper pesticide applications recorded in U.S. EPA's "Ecological Incident Information Systems." The most severe incident was the death of over one million fish in New York.
606 607 608 609 610 611 612	The event of fish kills in New York was reported by Preddice (2009) in the New York State Department of Environmental Conservation. The event occurred in the Hoosic River of Rensselaer County, New York, in 2001. Over one million of fish were killed by acidic copper sulfate solution. Details were not given in the report. According to a local news paper, about 2,000 gallons of acidic copper sulfate, used to electroplate circuit boards, was accidentally spilled from a storage building at the Oak-Mitsui plant into the Hoosic River before 3:30 am, June 28, 2001. A seven-mile stretch of the river was contaminated. Most of the aquatic life, including brown and rainbow trout, was killed (Albany Times Union, 2001).

⁷ As listed in 40 CFR 156.62, U.S. EPA establishes the four toxicity categories: I, II, III and IV. Toxicity category I is highly toxic and severely irritating, category II moderately toxic and moderately irritating, category III slightly toxic and slightly irritating, and category IV practically non-toxic and not an irritant. Toxicity category III substances cause eye irritation effects but the irritation effects are reversible within seven days. Toxicity category IV substances do not cause eye irritation effects.

613	
614	The report (Preddice, 2009) described the nine main causes of fish death in New York in the last ten years
615	(2000 – 2009). Chlorine, manure, and pesticides were the leading three causes. The most significant fish
616	kill, occurred 2001 in the Hoosic River, was not caused by a regulated use of copper sulfate as algicide or
617	invertebrate pest control but was an accidental release of industry material to the environment, according
618	to the local news paper.
619	
620	A 23-page review on the effect of copper on freshwater food chains and salmon was given by Woody
621	(2007).
622	
623	Evaluation Question #7: Describe any known chemical interactions between the petitioned substance
624	and other substances used in organic crop or livestock production or handling. Describe any
625	environmental or human health effects from these chemical interactions. (7 U.S.C. § 6518 (m) (1))
626	
627	Chemically, copper sulfate is incompatible with strong reducing reagents and incompatible with finely
628	powdered metals. It is very corrosive to steel and iron. It can react with magnesium, phosphates,
629	hydroxylamine, acetylene gas, hydrazine, or nitromethane. A reaction may occur if mixed with beta-
630	naphthol, propylene glycol, sulphathiazole and triethanolamine. The pH usually needs to be greater than
631	pH 7 before a reaction will proceed (MSDS-Copper Sulfate 1; MSDS-Copper Sulfate 2; MSDS-Copper
632	Sulfate 3). However, these are general chemical reactions and are not specific to organic farming.
633	
634	Copper is a naturally occurring substance with several oxidation states. Cupric copper has an oxidation
635	state of +2 and is the most stable form under most environmental conditions, which is demonstrated by the
636	natural existence of copper sulfate minerals such as chalcanthite.
637	
638	Specific to agricultural applications, copper has been used as a fungicide as early as the mid-1700s, and has
639	been used as fungicide, bactericide, aquatic herbicide, algaecide and molluscicide for use on a variety of
640	agricultural crops, ornamentals and turf for several hundreds of years. "Unlike other pesticides for which
641	EPA has followed a cumulative risk approach based on a common mechanism of toxicity, EPA has not
642	made a common mechanism of toxicity finding as to the copper ion and any other substances, and the
643	copper ion does not produce toxic metabolites produced by other substances. For the purposes of this
644	tolerance action; therefore, EPA has not assumed that the copper ion has a common mechanism of toxicity
645	with other substances," (RED-Cu, 2009).
646	
647	Evaluation Question #8: Describe any effects of the petitioned substance on biological or chemical
648	interactions in the agro-ecosystem, including physiological effects on soil organisms, crops, and/or
649	livestock. (7 U.S.C. § 6518 (m) (5))
650	
651	As noted in the 2001 petition for copper sulfate used as algicide and for tadpole shrimp control (McElroy,
652	2001), copper sulfate does kill algae and crustaceans. It also causes mortality of adult mosquito fish
653	(Gambusia affinis) and three spined sticklebacks (Gasterosteus aculeatus) at levels of 8-10 mg kg ⁻¹ in California
654	(Johnson and Grant, 1977; Fry and Mulla, 1992).
655	
656	Effects on Soil Microorganisms
657	
658	Copper is intended to be used as fungicides, algicides, and herbicides. The detrimental effects of copper on
659	soil microorganisms including fungi are documented (Van-Zwieten et al., 2004; Norgrove, 2007; Lejon et
660	al., 2008; and references cited therein). Copper was found to suppress rates of nitrogen fixation by
661	Rhizobium under some situations at copper levels of 235 mg kg ⁻¹ (Obbard and Jones, 2001; Mhatre et al.,
662	1997). Microbial biomass carbon is reduced in metal contaminated soils, and these effects may last many
663	years. A measure of soil enzyme activity indicated a large reduction of activity at high levels of copper
664	(900 mg kg ⁻¹) with no reduction noted up to a medium level (140 mg kg ⁻¹) (Mhatre et al., 1997).
665	
666	The tolerance and adaptation of soil microorganisms to heavy metals such as copper is the subject of
667	numerous researches (Blaszak and Plewake, 2008; Leano and Pang, 2010; and the references cited therein).

Different mechanisms might explain the tolerance of soil microorganisms to copper: "the ability to 668 passively extract metals from the cell, active transport of metal ions outside the cell, ability to mask metals 669 by chelating them, enzymatic transformation of metal ions, creating vacuoles in which metal ions are 670 671 gathered and immobilized in the form of polyphosphates, increased production of melanin and other

pigments, ability to produce specific metal binding compounds inside the cell," (Blaszak and Plewake, 672 673 2008). Microorganism "community tolerance to specific metals increased the most when the same metal 674 was added to the soil; for example, tolerance to Cu increased most in Cu-polluted treatments," (Baath et al., 1998).

675 676

677 The effects of copper on soil microorganisms depend on the soil (e.g. organic material content, and pH) 678 (Lejon et al., 2008), the concentration of copper, and the species of microorganisms (Hashem, 1997; Ezzouhri et al., 2009). As in a general case, a substance's "toxic" effect depends on its application dose. 679 680 Soil microorganisms are under the influence of copper already. Soil contains copper, as discussed in Question 4, in the range of tens of mg kg⁻¹. Numerous researches used much higher concentrations of 681 682 copper, on the order of hundreds of mg kg⁻¹, in order to observe the expected detrimental effects of copper 683 on soil microorganisms. For example, copper was 18 mg kg⁻¹ in control soil, 125 mg kg⁻¹ in treated low-Cu 684 soil and 282 mg kg⁻¹ in treated high-Cu soil in investigating the effect of metal-rich sludge amendments on the soil microbial community (Baath et al., 1998). The interpretation of experiment results was complicated 685 by the soil moisture content, but no significant differences were observed in the microorganism activities 686 687 between the control soil and the low-Cu soil.

688

689 A soil containing 6.1 mg kg⁻¹ of copper was augmented to a weak soil containing 80 mg kg⁻¹ of copper and a 690 strong soil containing 500 mg kg⁻¹ of copper in order to confirm the resistance of soil fungi to copper contamination (Blaszak and Plewako, 2008). A soil containing 60 mg kg⁻¹ of copper was treated to contain 691 692 250 mg kg⁻¹ of copper in order for confirming the copper dynamics and impact on microbial communities 693 in soils of variable organic status (Lejon et al., 2008). A soil was treated with copper acetate to contain 770 694 mg kg⁻¹ of copper to see the effect of copper on microorganisms in soil (Lugauskas et al., 2005). 695

696 A soil was treated with CuSO₄ to contain copper at following concentrations: 0 (control), 50, 100, 200, 400, 697 and 800 mg kg⁻¹. The copper contamination in laboratory soil microcosms was investigated. "SIR 698 (substrate-induced respiration) was the most sensitive of the parameters measured with significant effects 699 observed at Cu concentrations as low as 50 mg kg⁻¹. Microbial biomass N and earthworm growth showed 700 intermediate sensitivity with effects at 200 mg kg⁻¹Cu. The least sensitive organism-level parameters were 701 soil urease activity and nematode abundance, both showing significant effects only at 800 mg kg⁻¹Cu. At 702 the process-level, there was an inhibition of litter decomposition starting at 100 mg kg⁻¹Cu, and a sharp 703 increase in net N mineralization at 800 mg kg⁻¹Cu," (Bogomolov et al., 1996).

704

705 Van-Zwieten et al. (2004) reviewed the copper impacts on soil biota. Significant impacts were observed 706 when soil copper concentrations were greater than 150 mg kg⁻¹.

707

708 Soil microorganisms are most active in the surface soil and an "active" depth of top six-inch (0-15 cm) 709 might be a fair estimate. For example, soil microorganisms were most active in the top 0-25 cm (0-9.8 inch) 710 depth (Lugauskas et al., 2005). As discussed in Question 9, the increment of copper resulting from the 711 application of copper at a yearly rate of 10 lb A⁻¹, is 5.3 mg kg⁻¹ to the top six-inch soil. Assuming the active 712 depth is the top 3-inch of soil, the increment of copper is 10.6 mg kg⁻¹. The application of copper to mongo trees is 48 lb A-1.

713

714

715 716

Earthworms

717 Earthworms might be susceptible to heavy metals such as copper (Reinecke et al., 1997; Helling et al., 2000;

718 Valenzuela, 2010). A reduction of abundance and biomass of two species of earthworms was found at low

719 and medium levels of copper, and no earthworms present at high concentrations (Mahrtre, 2001). In that

720 work (Mahrtre, 2001), soil copper levels were not given, but earthworm copper contents in the low and

721 medium sites were 90-160 mg kg⁻¹ (Mahrtre, 2001).

722	
723	In the experiment by Helling et al. (2000), earthworms (<i>Eisenia fetida</i>) were exposed to urine-free cattle
724	manure substrate containing 4.02 (control), 8.92, 15.92, 39.47, 108.72, and 346.85 mg kg ⁻¹ of copper. The
725	growth of earthworms at exposures between 8.92 and 108.72 mg kg ⁻¹ of copper, in terms of earthworm
726	weight and mature worm percentage, was 70-80% of the growth of earthworms in the control substrate.
727	The mature worm percentage was zero when the copper exposure was 346.85 mg kg ⁻¹ .
728	
729	Norgrove (2007) investigated the effects of copper fungicide on earthworm activity and impacts on cocoa
730	yield over four years. The applications rates were high (about 2.8 lb Cu A ⁻¹ year ⁻¹), low (0.93 lb A ⁻¹ year ⁻¹)
731	and zero, respectively. Actually, "cocoa yields were 2.5 times greater in the high spray treatment than in
732	the low spray treatment. There were no significant differences in cast production between cacao spray
733	treatments in the first 3 years. In year 4 only, cast production was significantly lower in the high spray
734	treatment than in the no-spray control," (Norgrove, 2007).
735	
736	Effects on Crops
737	
738	Soils contain tens of mg kg ⁻¹ of copper. As discussed in Question 4, copper is bound to organic materials
739	and clay minerals, and the availability of copper to crops depends on the soil acidity. Therefore, 25-140 mg
740	kg ⁻¹ of copper in acidic soils might be toxic to plants, but copper could reach 1,000 mg kg ⁻¹ in soil with high
741	organic matter before phytotoxicity ⁸ would occur (Erich, 1994).
742	
743	Rehm and Schimitt (2009) stated that "copper (Cu) is an essential nutrient for plant growth, but because
744	only a small amount is needed, it is classified as a micronutrient The amount of Cu available to plants
745	varies widely by soils. Available Cu can vary from 1 to 200 ppm (parts per million) in both mineral and
746	organic soils as a function of soil pH and soil texture. The finer-textured mineral soils generally contain the
747	highest amounts of Cu. The lowest concentrations are associated with the organic or peat soils.
748	Availability of Cu is related to soil pH. As soil pH increases, the availability of this nutrient decreases.
749	Copper is not mobile in soils. It is attracted to soil organic matter and clay minerals."
750 751	For more of elfelfer come contractions and wheat the empount of comparis "deficient" at concentrations less
751 752	For crops of alfalfa, corn, soybeans, and wheat, the amount of copper is "deficient" at concentrations less than 2-5 mg kg ⁻¹ , "low" at concentrations of 2-9 mg kg ⁻¹ , "sufficient" at concentrations of 5-30 mg kg ⁻¹ ,
752 753	"high" at concentrations of 20-50 mg kg ⁻¹ , and "excessive" at concentrations greater than 50 mg kg ⁻¹ (Rehm
754	and Schimitt, 2009).
755	and Schmitt, 2009).
756	In high soil copper situations (600-900 ppm), while corn roots take up copper, it is not translocated to the
757	aerial parts of the plant or the crop (Brun et al., 2001). Copper concentration in corn roots was shown to be
758	as high in calcareous soils as low pH soil, showing that soil pH did not influence root uptake. Copper did
759	increase in aerial plant parts at a lower pH. Copper was thought to be retained in root cell walls and not
760	really taken up; however, high levels of copper inhibits root growth and damages root cells before affecting
761	shoot growth (Brun et al., 2001).
762	
763	Evaluation Question #9: Discuss and summarize findings on whether the petitioned substance may be
764	harmful to the environment. (7 U.S.C. § 6517 (c) (1) (A) (i) and 7 U.S.C. § 6517 (c) (2) (A) (i))
765	
766	US EPA's RED-Cu (2009) discussed the harmful effects on human being, terrestrial organisms, and aquatic
767	organisms (as detailed below in "Ecological Exposure and Risk"), but it indicated that "the antimicrobial
768	ecological assessment of copper compounds will be conducted at a later date." The effects of copper on soil

769 microorganisms including fungi were discussed in Question 8.

⁸ Phytotoxicity: is a term used to describe the degree of toxic effect by a compound on plant growth. Such damage may be caused by a wide variety of compounds, including trace metals, pesticides, salinity, phytotoxin or allelopthy.

770						
771			Copper in Soil			
772			11			
773	As given in Ouestior	n #4, copper, at concer	ntrations of tens of 1	ng kg-1, exits ub	iquitously in natura	ıl
774		one of the minor to tr			1 7	
775	,		I I I			
776		А	ddition of Copper t	to Soil		
777			addition of copper (
778	Copper used as a fur	ngicide is applied as a	foliar sprav Event	ually, the applie	d copper ends up i	n the
779		imilated by plants an				
780		of cupric ions per acre				
781	1 1	spically considered a	. ,	0		
782	-	f 1 lb A ⁻¹ is equivalent		,		100 g uni ,
783	un application face of	i i ib i ib equivalent	to un addition of 0	.020 mg kg to u	ie top bix men bon.	
784	Most of the maximu	m annual application	rates as given in A	ppendix A of RF	D-C11 (2009) are les	ss than 5
785		and vegetable (clove				
786		berry, strawberry), ar				
787		in application rate of 1				dualition
788	or copper to son, at a	in application face of a	10 100 11 , 10 0.0 116	kg to the top of	x men bon.	
789	The application rates	s are 10-20 lbs A ⁻¹ for t	tree nuts (avocado	olive coffee etc)	The highest rate	48 lbs A-1
790	11	Tree roots extend mi		,	0	
791		oxic substance) from				
792	of several mg kg ⁻¹ .	oxic substance) from	son. The correspon	uning ununion of	copper to som is on	the order
793						
794		Remova	al of Copper from S	oil by Crops		
795		Remove	a of copper nom of	on by crops		
796	Normal concentratio	n of copper in plants	is 5-20 mg kg-1 For	a quick estimati	on the crop vields	and
797		ns from a paper about	0 0	-	1 0	una
798	copper concentration	lo nom a paper about	copper uptake by I	(190) are abed here.	
799		Grain yield	Leaf Cu	Stem Cu	Grain Cu	
800		(kg ha ⁻¹)	(mg kg ⁻¹)	(mg kg ⁻¹)	(mg kg ⁻¹)	
801	Soybeans	2988	14.4	11.4	19.9	
802	Corn	3407	13.0	5.0	1.0	
803	Com	0107	10.0	0.0	1.0	
804	One acre is 0 404 hec	tares. The removal of	f conner was 24 o A	-1 by sovbean gr	ains or $1.4 \sigma A^{-1}$ by σ	orn
805		noval of copper by soy				
806	e	l removal of copper by	Ũ	0	0	0
807	A-1).	renie tu er copper e				(01 010 120
808						
809		Fnvironmen	tal Fate - Crop and	Soil Application		
810		Litvitoliiteit	turi tute erop und	Son Application		
811	The mobility of conn	er in soil depends on	soil pH soil compo	sition (e.g. orga	nic material clay m	inerals)
812		rations (e.g. crop rota				
813		break down any furt				
814		cupric ion has a high s	5 5		5 0	
815		e surface is not expect				
816	copper applied to the	surface is not expect	ea to readily move	into groundwat	(ILE Cu, 2007)	•
010						

⁹ A certain soil depth is needed to correlate an application value which is mass per area (lb A⁻¹) to a concentration which is mass per volume (or mass per mass, mg kg⁻¹). Relevant to issues of plant nutrient or toxicity, a 6-inch (or 1-foot) depth is used for discussion simplicity and is assumed as the soil depth most (crop) plant roots would extend to (take nutrients or toxic from). Tree roots extend much deeper than 6 inches.

Technical Evaluation Report

Copper Sulfate

017	
817	As given above, the majority of applied copper as a pesticide would remain in soil, resulting in an increase
818	of copper concentration in soil over time with continued applications. Furthermore, "since copper is a
819	naturally occurring element, there are always background concentrations of copper from which point and
820	non-point sources cannot easily be distinguished. Aside from natural environmental releases of copper,
821	there are other sources, such as pesticides, anti-foulants and wood preservatives, leaching from mining
822	operations, industrial runoff, architectural uses, and brake pads. Therefore, concentrations of copper
823	measured in soil or water can also reflect other point or non-point sources of copper besides pesticides,"
824	(RED-Cu, 2009).
825	
826	"Copper is an essential nutrient required for proper homeostasis in all organisms. Most organisms have
827	homeostatic mechanisms to process excess copper or to manage the deficiency of copper levels" (RED-Cu
828	2009). Copper toxicity to crops might be possible if copper use is unregulated (Stehouwer and Roth, 2004).
829	"Copper deficiencies are rare in Wisconsin. Most verified cases have involved small grains, lettuce, or
830	onion grown in acid organic soils. Copper toxicity in some sandy soils has resulted from repeated use of
831	copper-containing fungicides over many years," (Schulte and Kelling, 1999).
832	
833	Environmental Fate – Water Application
834	
835	An application rate of one pound per acre (1 lb Cu ²⁺ A ⁻¹ , or 1.12 mg dm ⁻²) is equivalent to an addition of
836	one mg kg ⁻¹ (one ppm) of copper to 0.112 m-deep water. An application rate of 18 lb A ⁻¹ is needed to add
837	one ppm of copper to a 2-meter deep pond. The target concentrations of copper are 0.1-1 ppm for algae
838	and aquatic weeds control, and 1-2.5 ppm for snails, leeches, and other similar organism's control.
839	Appendix A of RED-Cu (2009) listed several direct aquatic application rates.
840	
841	The average concentration of dissolved copper in several hundreds of surface water samples collected
842	nationwide was 2.61 µg L ⁻¹ (ppb) (Table 7 of RED-Cu, 2009). Therefore, a direct aquatic application of
843	copper, at ppm level, could cause a great disturbance to natural ecology in terms of copper concentration if
844	released without further treatment.
845	
846	The fate of copper applied to water bodies could be quite complicated. Affecting factors could include
847	copper compound (salts, oxides, hydroxides, and organic complexes), water pH, water redox potential
848	(surface water is usually oxic, but deep water, or water containing high concentrations of dissolved organic
849	materials, could be anoxic or even contain sulfide), concentration of suspended material, concentration of
850	dissolved organic carbon and competing ligands, and other factors such as water movement. The fate of
851	copper would become very mobile, stay as dissolved or be fixed to bottom sediment. In a no-outlet pond,
852	the applied copper might eventually be deposited to the bottom sediment. Depending on the applied
853 854	amount (proportional to targeted concentration and water depth), the accumulation of copper to bottom
854	sediment could be significant, especially since the deposition of copper would be limited to the very top
855 856	layer of sediment. For example, an application rate of 17 lb A ⁻¹ would be equivalent to an addition of 27 mg kg ⁻¹ of copper to the top 5-cm (about two inches) of sediment.
850 857	ing kg ² of copper to the top 5-cm (about two inches) of sediment.
858	"Copper is an essential nutrient required for proper homeostasis in all organisms. Most organisms have
858 859	homeostatic mechanisms to process excess copper or to manage the deficiency of copper levels. However,
860	aquatic animals are exposed to copper by more than just dietary routes, and are more sensitive to copper
861	than terrestrial animals. The mode of toxicity for aquatic organisms is different than for terrestrial animals
862	in that copper rapidly binds and causes damage to the gill membranes, and interferes with osmoregulatory
862	processes. Aquatic plants, which are target organisms for most direct aquatic uses of copper, are also more
863 864	sensitive to copper than terrestrial plants," (RED-Cu, 2009). With a direct aquatic application, all are
865	affected, including fish, invertebrates, and plants. A 23-page review on the effect of copper on freshwater
866	food chains and salmon was given by Woody (2007).
867	
868	The tolerances of these organisms to copper may vary, and some non-target species may be eliminated

while targeted species are controlled. "The potential risk to aquatic organisms must be considered in conjunction with the environmental benefit intended for some uses of copper. Excessive algal growth in 869

870

871 lakes or ponds caused by high nutrient input can damage aquatic life by causing high oxygen demand, in 872 some cases leading to eutrophication. In other cases, copper is used to control invasive aquatic plants which can out-compete and replace native plants, changing the ecosystem and reducing food sources for 873 874 aquatic and terrestrial animals in or near the water. The use of copper for control of parasites (through 875 snail control) benefits swimmers in recreational waters and fish that can be infected" (RED-Cu, 2009). 876 877 Ecological Exposure and Risk 878 879 Toxicity to Plants: One of the limiting factors in the use of copper compounds is their serious potential for 880 phytotoxicity. Copper sulfate can kill plants by disrupting photosynthesis. Blue-green algae in some copper sulfate treated Minnesota lakes became increasingly resistant to the algacide after 26 years of use 881 (Copper Sulfate, 2001; Kamrin, 1997). Copper is more available for plant uptake from soil when soil is 882 883 acidic. Toxic plant levels could be reached at soil levels of $25-140 \text{ mg kg}^{-1}$ in acidic mineral soils. It is less available in soils rich in organic matter. Levels in soil with high organic matter could reach 1000 mg kg⁻¹ 884 885 before phytotoxicity would occur (Erich 1994). 886 887 Effects on Birds: Copper sulfate is considered to be nontoxic to birds. It poses less of a threat to birds than 888 to other animals. The lowest lethal dose is 1000 mg kg⁻¹ in pigeons and 600 mg kg⁻¹ in ducks. The oral LD_{50} for Bordeaux mixture in young mallards is 2000 mg kg⁻¹ (Copper Sulfate, 2001; Kamrin 1997). 889 890 891 Effects on Aquatic Organisms: Copper sulfate is highly toxic to fish. Even at recommended rates of 892 application, this material may be poisonous to trout and other fish, especially in soft or acid waters. Its 893 toxicity to fish generally decreases as water hardness increases. Wurts provided the application rate of 894 copper sulfate with respect to fish species and water alkalinity (Wurts). Fish eggs are more resistant than 895 young fish fry to the toxic effects of copper sulfate. Copper sulfate is toxic to aquatic invertebrates, such as 896 crab, shrimp, and oysters. The 96-hour LC₅₀ of copper sulfate to pond snails is 0.39 mg L⁻¹ (ppm) at 20°C. 897 Higher concentrations of the material caused some behavioral changes, such as secretion of mucous, and 898 discharge of eggs and embryos. 899 900 The previous Technical Advisory Panel (TAP) Review for Copper Sulfate, as an algicide and invertebrate 901 pest control, indicated that bees might be endangered by Bordeaux mixture (Copper Sulfate, 2001). 902 However, RED-Cu (2009) indicated that "available data from a honey bee acute toxicity study indicated 903 that copper is practically nontoxic to honey bees, with an acute $LD_{50} > 100 \,\mu g/bee$." 904 905 As it was given in Question #6, copper pesticides have been used for over one hundred years, but there 906 were relatively few reported incidents associated with copper compounds. 907 908 Models were used by U.S. EPA to assess the ecological exposure and risk of copper application. The 909 contents covered are: 910 a. Aquatic organisms 911 1. Freshwater fish and invertebrates (Agricultural uses, exposure via spray drift, 912 uncertainties in freshwater animal risk assessment, aquatic uses, and urban uses) 2. Freshwater plants 913 3. Estuarine/marine fish and invertebrates 914 915 4. Estuarine/marine plants b. Terrestrial Organisms 916 917 1. Birds and mammals (Copper exposure to birds and mammals, toxicity to birds and 918 mammals, risk to birds and mammals, birds-orchard applications, birds-row crop 919 applications, mammals-orchard applications, and mammals-row crop applications) 920 2. Nontarget insects 3. Terrestrial plants 921 Endangered species 922 c. 923 1. Terrestrial organisms (Mammals, and birds) 924 2. Aquatic organisms (Freshwater animals, estuarine/marine, and plants)

Selection of models, parameters of models, interpretation of modeling results, and limitations of modelsare discussed in p. 35-59 of RED-Cu (2009).

928

Evaluation Question #10: Describe and summarize any reported effects upon human health from use of the petitioned substance. (7 U.S.C. § 6517 (c) (1) (A) (i), 7 U.S.C. § 6517 (c) (2) (A) (i)) and 7 U.S.C. § 6518 (m) (4))

932

933 In "III Summary of Coppers Risk Assessments" of RED-Cu (2009), human health risk, after aggregate or 934 combined exposure to copper compounds, was adequately assessed. The basic considerations are that 935 copper is naturally-occurring, ubiquitous in environment, copper itself is a nutrient, copper deficiency is 936 more of a problem than copper over-exposure, the active assimilation of copper through routes of food, 937 drink, air, non-occupational sources, and other exposure is efficiently modulated, excessively available 938 copper is not assimilated but instead is actively excreted, and no systematic and carcinogenic effects are 939 observed/confirmed. The overall conclusion is that copper, when used as pesticide following the label, 940 would not cause toxic effects.

941

Humans are exposed to copper primarily from food (organ meats, seafood, beans, nuts, and whole grains),
and drinking water sources, as well as in the air. The estimated total daily oral intake of copper is between
1 and 2 mg day⁻¹. These values are higher than the recommended dietary allowance (RDA) of copper, as
established by the National Academy of Science, ranging from 0.34 mg day⁻¹ in young children to 1.3 mg
day⁻¹ for pregnant and lactating females. In a number of clinical trials, copper doses of 2-10 milligrams by

- 947 mouth were safely used in patients (Hopkins Technology).
- 948

949 However, copper deficiency seems a more consistent problem. RED-Cu (2009) stated that "the mechanisms 950 for regulating total copper in the body appear to be efficient in maintaining a generally consistent level of 951 copper needed for homeostasis. The efficiency of copper absorption varies greatly, depending on dietary 952 intake. When dietary copper is high and more copper is absorbed, mainly through the gastrointestinal 953 tract, excretion of copper from the body increases, protecting against excess accumulation of copper in the 954 body. Depending on the copper status in the body at the time, approximately 20 to 60% of dietary copper 955 may be absorbed. Copper absorption is also affected by other factors such as species, age, chemical form, 956 and pregnancy. When copper intake is low, little copper is excreted from the body, protecting against 957 copper depletion. Generally, current available data and literature studies indicate that there is a greater risk 958 from the deficiency of copper intake than from excess intake. A deficiency of copper or a defect in copper 959 carrying proteins may result in symptoms such as anemia, defective blood vessel development, or 960 connective tissue symptoms."

961

962Evaluation Question #11:Describe all natural (non-synthetic) substances or products which may be963used in place of a petitioned substance. (7 U.S.C. § 6517 (c) (1) (A) (ii)) Provide a list of allowed964substances that may be used in place of the petitioned substance. (7 U.S.C. § 6518 (m) (6))

965

Elemental sulfur and liquid lime sulfur, as well as copper compounds, are used as standard fungicides for
many years in organic production systems (Organic Production 1; Organic Production 2). Copper sulfate
and copper hydroxide exist as natural minerals, as discussed in Question #2. Copper and sulfur products
have different degrees of effectiveness for specific diseases on various crops (Caldwell et al., 2006). As

given below, the use of copper sulfate still possesses several advantages.

971

972 Copper compounds have historically been used in organic agriculture, and are widely used to control

- bacterial and fungal diseases of fruit, vegetable, nuts, and field crops (Kamrin, 1997; Boyer et al., 1994).
- 974 Increasing concern about long-term build up in soil is particularly evident in Europe, where a history of
- high application rates has occurred. EU was supposed to propose a complete ban on all copper use,
- scheduled to take effect in May 2002 (Copper Sulfate, 2001). Instead, Commission Regulation (EC) No.
- 977 889/2008 was published in September 2008, setting maximum limits for copper accumulation as 6 kg
- 978 Cu/ha per year (5.36 lb A⁻¹), and added copper octanoate (cupric salt of fatty acid) for organic food

979 980	production in 2009. This adjustment was assessed by the Food and Agriculture Organization of the United Nations in May 2010 (CODEX-CX/FL 10/38/1, 2010).
981 082	
982 082	Copper is very limited in mobility and availability in the soil, particularly in high pH soils and in
983 084	association with high organic content of soils. Application rates used in rice production (a once yearly use,
984 085	usually in a rotation of once every three years) does not appear to pose as high an environmental impact as
985 086	levels applied for foliar disease control. However, use in aquatic systems presents additional concerns
986	about impact on fish and other aquatic wildlife, and potential for water contamination.
987 088	U.C. EDA many induces of the internet sector induced by (DED. Co. 2000)
988	U.S. EPA recognized the advantages of using copper pesticides (RED-Cu, 2009):
989 000	"Through outproise outproch to the multiple equal of additional composite and refined
990 001	"Through extensive outreach to the public as well as additional comments and refined
991 002	information provided by the user community, the Agency has determined that there are
992 002	many benefits that support the significance and continued agricultural uses of copper
993 004	pesticides. A significant benefit is that copper exposure from all sources, including use as a
994 005	pesticide in agricultural settings, does not pose any human health concerns. Although there
995 006	is still potential for ecological effects to non-target organisms, there are many benefits to
996	retain agricultural uses of copper pesticides."
997 000	
998	One of the benefits, for example, is that "based on its history of use for many centuries, there is little
999	evidence to indicate any significant pest-resistance problems Coppers are used in some Integrated
1000	Pest Management (IPM) systems, alternated with some systemic fungicides that have a high risk of
1001	developing resistance or have shown early indications of some pesticide resistance," (RED-Cu, 2009).
1002	The second for the large $(1 + 1) = (1 + 1) =$
1003	The specific areas where the benefits of coppers are significant were given by (RED-Cu, 2009) (p. 69-p. 72):
1004	a. Benefits of Copper Pesticides
1005	1. Terrestrial Uses
1006	2. Aquatic Weeds and Algae: Aquaculture, drinking water, irrigation/conveyance
1007	systems, and quiescent water bodies (recreational, ornamental). Alternatives
1008	3. Aquatic Invertebrate Control (Leech, tadpole shrimp, and freshwater snails)
1009 1010	
1010	Evaluation Question #12: Describe any alternative practices that would make the use of the petitioned
1011	substance unnecessary. (7 U.S.C. § 6518 (m) (6))
1012	substance unnecessary: (7 0.5.e. g 0510 (m) (0))
1013	Several strategies for organic crops are rotating crops, selecting resistant plants and cultivars, keeping out
1015	any materials that are contaminated with pathogens or diseased plants, finding disease suppressive soils,
1015	managing nutrients, and controlling diseases, such as given in "Plant disease management for organic crops"
1010	by Koike et al. (2000), "Sustainable management of soil-borne plant diseases" by Sullivan (2004), and "Pesticides
1017	and organic farming – a last resort" by Soil Association – Organic Standard (Soil Association-Information
1010	Sheet).
1020	Sheety.
1020	Plant diseases may be managed by the "Strategies of Integrated Pest Management" (IPM). IPM "is an
1022	effective and environmentally sensitive approach to pest management that relies on a combination of
1022	common-sense practices. IPM programs use current, comprehensive information on the life cycles of pests
1023	and their interaction with the environment. This information, in combination with available pest control
1024	methods, is used to manage pest damage by the most economical means, and with the least possible
1025	hazard to people, property, and the environment. The IPM approach can be applied to both agricultural
1020	and non-agricultural settings, such as the home, garden, and workplace. IPM takes advantage of all
1028	appropriate pest management options including, but not limited to, the judicious use of pesticides. In
1020	contrast, <i>organic</i> food production applies many of the same concepts as IPM but limits the use of pesticides
1030	to those that are produced from natural sources, as opposed to synthetic chemicals," (US EPA–IPM).
1031	r · · · · · · · · · · · · · · · · · · ·
1032	A "Database of IPM Resources (DIR)" (Vegetable-IPM) is provided by the Integrated Plant Protection

1033 Center – Oregon State University, including sources of information for vegetable disease control methods.

1034	
1035	Crop rotation
1036	
1037	Crop rotation is that the succeeding crops are of a different genus, species, subspecies, or variety than the
1038	previous crop on a field. Some benefits of crop rotation are the reduced insect and disease problems, and
1039	beneficial residual herbicide carryover (Peel, 1998; Ashley, 1994.)
1040	
1041	The initial petition (McElroy, 2001) submitted to National Organic Program to expand the use of copper
1042	sulfate notes that occasional use of copper sulfate is needed in situations where rice is directly seeded into
1043	flooded fields. Direct-seeding is common in the Americas, southern Europe, Australia, India, Sri Lanka,
1044	Malaysia and Thailand (Luh, 1991). It is done where production is highly mechanized, but labor is not
1045	available or economically justified for direct transplanting.
1046	
1047	Cultural Control
1048	
1049	Tadpole shrimp are not a problem in transplanted rice, and are in fact encouraged as a method of biological
1050	weed control. Japanese literature has many references to efficacy and use of tadpole shrimp (Igarashi,
1051	1995; Yonekura, 1979; Matsunaka, 1975).
1052	
1053	In addition to transplanting rice, direct seeding by drilling seed before flooding is practiced in some areas.
1054	This does not seem to be the practice in California, and has limitations regarding weed control and soil
1055	type (Luh, 1991).
1056	Mast to deale shrippe ages botch within 2 days after contact with water. Immediate conding after floading
1057 1058	Most tadpole shrimp eggs hatch within 2 days after contact with water. Immediate seeding after flooding reduces the potential for plant injury. Extension publications recommend seeding basins in sequence as
1058	they fill with water. However, windy weather conditions can prevent the seeding operation from
1059	happening in a timely way.
1060	happening in a unicity way.
1062	Draining Control
1063	0
1064	Since tadpole shrimp are aquatic in their damaging stage, draining is an alternative to chemical control.
1065	The draining should not take place until four to five days after initial flood so the maximum egg hatch
1066	would have occurred. The draining time will vary due to soil type and weather but should continue for at
1067	least 24 hours after all standing water is gone. Tadpole shrimp will gather in standing water in low areas
1068	and will re-infest the field if the drain period is too short. Reflooding may result in some tadpole shrimp
1069	from previously unhatched eggs, but they would be in noneconomic numbers and less likely to damage the
1070	older, firmer rooted seedlings.
1071	
1072	Draining as a control measure has negative aspects such as fertilizer loss, encouragement of weeds, or
1073	interruption of weed control procedures, interruption of pesticide holding requirements, and the
1074	economics of irrigation (Godfrey and Espino, 1999).
1075	
1076	Alternate Flooding and Draining
1077	
1078	Flooding and draining before planting will expose hatched tadpole shrimp to desiccation if adequate time
1079	is allowed. Any soil cultivation following the drain period may bring viable, unhatched shrimp eggs to the
1080 1081	soil surface for possible infestation upon reflooding, however.
1081	Tadpole shrimp eggs are adapted to alternate periods of drying and wetting, and will not hatch if they do
1082	not receive a drying period. Suppression of tadpole shrimp hatch was very high when soil moisture levels
1085	did not drop below 25% and resulted in egg mortality (Fry and Mulla, 1992). It seems possible, though it
1085	may not be practical, to manipulate soil water levels on a cyclical basis to reduce populations.
1086	, r
1000	

1087 Algae growth is also aggravated by delayed seeding and warm temperatures that encourage algae growth 1088 before rice seedlings emerge. Water management strategies can be manipulated, and shallow water (0 to 2 1089 inches) promotes the growth of all rice weeds. Intermittent draining, particularly early in the season to 1090 control algae, may allow other weed seedlings to establish that would not have survived a continuous 1091 flood. Nitrogen and phosphate fertilizers can affect algae growth. Algae grows more vigorously and may 1092 become well-established when high rates of nitrogen and phosphorous are left on the soil surface. 1093 1094 Organic Apple Project 1095 1096 REPCO was a project conducted in EU to contribute to the replacement of copper fungicides in organic 1097 agriculture by new measures for control of downy mildew in grapevine and scab in apple. A 70-page 1098 report was produced (Kohl, 2007). The report covered the project from November 1, 2003 to October 31, 1099 2007. It suggested that the project results "strongly support EU policies to replace the use of copper 1100 fungicides in organic agriculture in near future." The REPCO project resulted in finding "a number of 1101 potential new compounds, Yucca extracts, and a formulated antagonist with high potentials for future scab 1102 control," (Heijne et al., 2008). However, as given above in "International" status, copper sulfate is still 1103 accepted by CODEX and European Union. 1104 1105 Primary disease organisms of concern in Michigan are apple scab and fire blight. Farmers have options in 1106 managing these diseases including: "1) varieties of apples that have varying degrees of resistance to the 1107 pathogens; 2) hygienic practices and scouting that limit that quantity of inoculum in and around the 1108 orchard; 3) a system of forecasting when cumulative environmental factors favor an infection by the 1109 pathogen; and 4) once such conditions are forecasted, spray applications may reduce infection," 1110 (Schwaillier, 2006). The four approved spray products are lime-sulfur, copper, Serenade, and compost tea. 1111 Copper is used for very high risk of the disease infection. 1112 1113 The document of "Disease management guidelines for organic apple production in Ohio" (Ellis, 2008) provided excellent contents such as "Disease that need to be considered within the IPM program," 1114 "Disease management options for organic production systems," and "Approaches toward reducing the use 1115 1116 of fungicides for scab control." It also provided links for additional information about "Organic insect and disease management." The documents of "Organic small fruit disease management guidelines" (Organic 1117 1118 Production 1) and "Integrated management of grape diseases" (Organic Production 2) provided 1119 information about fungicides for use in organic production systems. For example, ten "alternative disease 1120 control products" were discussed in these documents. 1121 1122 Additional information about tree fruits are available from "Backyard orchard: apples and pears," (Swift et 1123 al., 2007), "Using common pesticides on backyard tree fruits," (Longstroth, 2007), "Home tree & small fruit 1124 pest management guide," (Faubert et al., 2000), and "Disease management for fruit trees after crop loss," 1125 (Beckerman, 2010). 1126 1127 1128 References 1129 1130 Albany Times Union. 2001. Article: Spill was plant's second shock to Hoosic River. (Main). Albany Times 1131 Union (Albany, NY). July 3, 2001. http://www.highbeam.com/doc/1G1-157494824.html 1132 Andreu V and Gimeno-Garcia E. 1999. Evolution of heavy metals in marsh areas under rice farming. 1133 1134 Environmental Pollution, 104, 271-282. 1135 1136 Ashley RA. 1994. Having problems controlling vegetable crop diseases – Try rotation. University of 1137 *Connecticut*. http://www.hort.uconn.edu/ipm/veg/htms/rotate.htm 1138 1139 Baath E, Diaz-Ravina M, Frostegard A and Campbell C. 1998. Effect of metal-rich sludge amendments on 1140 the soil microbial community. Appl. Environ. Micro., 64, 238-245.

1141	
1142	Beckerman J. 2010 . Disease management for fruit trees after crop loss. <i>Perdue University – Extension</i> .
1143	http://www.extension.purdue.edu/extmedia/BP/BP-179-W.pdf
1144	<u>inpr////////////////////////////////////</u>
1145	
1146	Besnard E, Chenu C and Robert M. 2001. Influence of organic amendments on copper distribution among
1147	particle-size and density fractions in Champagne vineyard soils. <i>Environmental Pollution</i> , 112, 329-337.
1148	
1149	Blaszak M and Plewako M. 2008. Resistance of soil fungi to copper contamination. Polish J. Natural Sci., 23,
1150	635-644.
1151	
1152	Bogomolov DM, Chen SK, Parmelee RW, Subler S and Edwards CA. 1996 . An ecosystem approach to soil
1153	toxicity testing: a study of copper contamination in laboratory soil microcosms. <i>Appl. Soil Ecol.</i> , 4, 95-105.
1154	
1155	Boyer J, Christup J, Trusty G. and Uddameri V. 1994. Copper fungicides and certifiable organic produce - A
1156	report to the Maine Organic Farmers and Growers Association (part of petition and original 1995 TAP
1157	review).
1158	
1159	Brun LA, Maillet J, Hinsinger P. and Pepin M. 2001. Evaluation of copper availability to plants in copper-
1160	contaminated vineyard soils. <i>Environmental Pollution</i> , 111, 293-302.
1161	containinatea vineyara 5015. Environmentai Fotaaton, 111, 275 502.
1162	Caldwell B, Brown Rosen E, Sideman E, Shelton AM and Smart CD. 2006. Resource guide for organic insect
1163	and disease management. Cornell University NYS Agricultural Experiment Station.
1164	http://www.nysaes.cornell.edu/pp/resourceguide/index.php
165	
166	CODEX-GL 32. 1999. Guidelines for the production, processing, labeling and marketing of organically
167	produced foods. CODEX. Joint FAO/WHO Food Standards Programme. GL 32-1999. Adopted 1999. Revisions
168	2001, 2003, 2004 and 2007. Amendments 2008, 2009 and 2010.
169	http://www.codexalimentarius.net/download/standards/360/cxg_032e.pdf
170	
171	CODEX-CX/FL 10/38/1, 2010. Joint FAO/WHO food standards programme – CODEX Committee on
172	food labeling. CODEX. Joint FAO/WHO Food Standards Programme. CODEX. 38th Session. CX/FL 10/38/1
173	
174	Copper.ORG. 2010. Uses of copper compounds: Copper sulphate. Copper Development Association Inc.
175	http://www.copper.org/applications/compounds/copper_sulfate01.html
176	
177	Copper Pesticides. 2009. Proposed Re-evaluation Decision - Copper Pesticides - PRVD2009-04. Canada.
178	Health Canada. February 2009. http://www.hc-sc.gc.ca/cps-spc/pest/part/consultations/_prvd2009-
179	04/copper-cuivre-eng.php
180	<u>off copper curve eng.php</u>
181	Copper Sulfate. 2001 . Copper sulfate, as algicide and invertebrate pest control. NOSB TAP Review <i>Compiled</i>
182	by OMRI (<u>http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5067070</u>).
183	
184	Ellis MA. 2008 . Disease management guidelines for organic apple production in Ohio. <i>Ohio State University</i> .
85	Department of Plant Pathology. <u>http://www.caf.wvu.edu/kearneysville/organic-apple.html#Links</u>
186	
187	Erich S. 1994. Copper fungicides and certifiable organic produce: a report to the Maine organic farmers
188	and growers association. In the petition to NOSB: McElroy, 2001. p. 27 – 53.
189	
90	EU-404/2008. 2008. Commission regulation (EC) No 404/2008 of 6 May 2008 amending Annex II to Council
191	Regulation (EEC) No 2092/91 on organic production of agricultural products as concerns the authorization
192	of spinosad, potassium bicarbonate and copper octanoate and the use of ethylene. Official Journal of the
193	<i>European Union</i> . OJ L 120/8. 7.5.2008.
194	

1195 1196 1197 1198	EU-834/2007. 2007 . Regulations – Council regulation (EC) No 834/2007 of 28 June 2007 on organic production and labeling of organic products and repealing regulation (EEC No 2092/91. <i>Official Journal of the European Union</i> . OJ L 189/1. 20.7.2007
1199 1200 1201 1202 1203	EU-889/2008. 2008 . Regulations – Council regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) no 834/2007 on organic production and labeling of organic products with regard to organic production, labeling and control. <i>Official Journal of the European Union</i> . OJ L 250/1. 18.9.2008.
1204 1205 1206	Ezzouhri L, Castro E, Moya M, Espinola F andLairini K. 2009 . Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. <i>African J. Microbiol. Res.</i> , 3, 35-48.
1207 1208 1209	Facchinelli A, Sacchi E and Mallen L. 2001 . Multivariate statistical and GIS - based approach to identify heavy metal sources in soils. <i>Environmental Pollution</i> , 114, 313-324.
1210 1211 1212	Faubert HH, Alm SR, Wallace DB, Casagrande RA and Tewksbury L. 2000 . Home tree & small fruit pest management guide. <i>University of Rhode Island</i> . http://www.uri.edu/ce/factsheets/sheets/fruitsprayguide.html
1213	<u> </u>
1213 1214 1215 1216	Frank D, Galloway J and Assmus K. 2005 . The life cycle of a mineral deposit – A teacher's guide for hands on mineral education activities. <i>U.S. Department of the Interior, U.S. Geological Survey</i> . General Information Product 17.
1217	
1218 1219 1220	Fry L and Mulla MS. 1992 . Effect of drying period and soil moisture on egg hatch of the tadpole shrimp (Notostraca: Tripdisidae). <i>Journal of Economic Entomology</i> , 85, 65-69.
1221	Gimeno-Garcia E, Andreu V. and Boluda R. 1996 . Heavy metals incidence in the application of inorganic
1222 1223	fertilizers and pesticides to rice farming soils. <i>Environmental Pollution</i> , 92, 19-25.
1224 1225	Godfrey LD and Espino LA. 1999 . Rice – Tadpole shrimp. <i>UC IPM Online. US-Davis</i> <u>http://www.ipm.ucdavis.edu/PMG/r682500111.html</u>
1226 1227 1228 1229 1230	Gremion F, Chatzinotas A, Kaufmann K, Von Sigler V and Harms H. 2004 . Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. <i>FEMS Micro. Ecolo.</i> , 48, 273-283.
1230 1231 1232 1233	Hashem AR. 1997 . Effect of heavy metal ions on the mycelia growth of some fungi isolated from the soil of Al-Jubail Industrial City, Saudi Arabia. <i>J. King Saud. Univ.</i> , 9, 119-124.
1233 1234 1235 1236	Hebert C. 1993 . NTP Technical report on toxicity studies of cupric sulfate (CAs no. 7758-99-8) administered in drinking water and feed to F344/N rats and BGC3F mice. <i>Toxic Rep. Ser.</i> , 29, 1-D3.
1237 1238 1239	Heijne B, de Jong PF, Trapman M, Lindhard Pdeersen H, Paaske K, Bengtsson M, Hockenhull J, Eiben U and Kohl J. 2008 . EU-Project replacement of copper fungicides in organic production of apple (REPCO): Strategy against apple scab and results. <i>International Society for Horticultural Science Commission</i> . Organic
1240 1241 1242	Fruit Conference. June 16 th – 17 th , 2008. Vignola. <u>http://www.ifoam.org/events/ifoam_conferences/owc/modules/abstracts_pdfs/heijne_fruit_pap.doc-</u> <u>FC.pdf</u>
1242	
1243	Helling B, Reinecke SA and Reinecke AJ. 2000. Effects of the fungicide copper oxychloride on the growth
1244	and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicol. Environ. Saf., 46, 108-116.
1245	and reproduction of Election Jernan (Ongoenacia). Electronicol. Enerton. 001., 40, 100 110.
1240 1247 1248	Holmgren, G.G.S., Meyer, M.W., Chaney, R.L. and Daniesl, R.B. 1993 . Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United States of America. <i>Journal Environmental Quality</i> , 22, 335-348.

1249	
1250	Hopkins Technology. Copper. <i>Hopkins Technology LLC</i> . <u>http://www.hoptechno.com/book29m.htm</u>
1251	
1252	Igarashi, K. 1985. Ecological studies on Triops cancriformis (Bosc) inhabiting Shonai district, Japan. VI.
1253	Oscillation of biomass and biological control of weeds in paddy. Journal-of-the-Yamagata-Agriculture-and-
1254	Forestry-Society., No.42, 35-42.
1255	1010011 y 000000 y, 110.12, 00 12.
1255	Johnson, C.R. and Grant, C.D. 1977 . The effects of copper sulphate exposure on thermal tolerance,
1257	orientation and survival in adult mosquitofish, <i>Gambusia affinis</i> , and juvenile threespined sticklebacks,
1258	<i>Gasterosteus aculeatus</i> . Proceedings and papers of the Forty-fifth Annual Conferenc of the Californian
1259	Mosquito and Vector Control Association Inc. February 13-16 1977. pp. 66-68.
1260	
1261	Kamrin, M.A. 1997. Pesticide profiles - Toxicity environmental impact, and fate. CRC-Lewis Publishers, Boca
1262	<i>Raton FL</i> . pp. 421-578.
1263	
1264	Kirk-Othmer. 1982. Encyclopedia of Chemical Technology, 3rd Ed. John Wiley and Sons NY (included in the
1265	petition by McElroy, 2001).
1266	
1267	Kohl J. 2007. REPCO – Replacement of copper fungicides in organic production of grapevine and apple in
1268	Europe. REPCO. http://www.pri.wur.nl/NR/rdonlyres/2A128277-9900-436F-85FD-
1269	C82998B022C2/69863/REPCOFinal_executive_summaryJ%C3%BCrgenK%C3%B6hl.pdf
1270	<u></u>
1270	Koike, S.T., Gaskell, M., Fouche, C., Smith, R. and Mitchell, J. 2002 . Plant disease management for organic
1271	crops. University of California. http://ucanr.org/freepubs/docs/7252.pdf
1272	crops. andersity of California. <u>Intp://acani.org/neepubs/cocs/7252.pur</u>
	Leans EM and Dana KL 2010 Effect of compar(II) lead(II) and Zr(II) on growth and ensymbolis
1274	Leano EM and Pang KL. 2010 . Effect of copper(II), lead(II), and Zn(II) on growth and sporulation of
1275	Halophytophthora from Taiwan Mangrove. Water Air Soil Pollut., 213, 85-93.
1276	
1277	Lejon DPH, Martins JMF, Leveque J, Spadini L, Pascault N, Landry D, Milloux M, Nowak V, Chaussod R
1278	and Ranjard L. 2008. Copper dynamics and impact on microbial communities in soils of variable organic
1279	stutus. Environ. Sci. Technol., 42, 2819-2825.
1280	
1281	Longstroth M. 2009. Using common pesticides on backyard tree fruits. Michigan University – Extension.
1282	<u>http://www.canr.msu.edu/vanburen/fhtrespry1.htm</u>
1283	
1284	Lugauskas A, Levinskaite L, Peeiulyte D, Repeekiene J, Motuzas A, Vaisvalavieius R and Prosyeevas I.
1285	2005 . Effect of copper, zinc and lead acetates on microorganisms in soil. <i>Ekologija</i> , 1, 61-69.
1286	
1287	Luh, B.S. Ed. 1991 . Rice. Volume I, Production. Van Nostrand Reinhold, NY pp. 155 – 179.
1288	
1289	Matsunaka, S. 1976 . Tadpole shrimp: a biological tool of weed control in transplanted rice fields.
1290	Proceedings-of-5th- Asian-Pacific-Weed-Science-Society-Conference-Tokyo-Japan-1975. p. 439-443.
1291	
1292	McElroy B. 2001. Petition for copper sulfate in crop production – To add another annotation. California
1292	Certified Organic Farmers.
1293	http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5067032&acct=nopgeninfo
1295	http://www.ans.usua.gov/htmov1.0/genneruDocrvanie_511ErRDC5007052@acer_hopgeninto_
	March Inday 1060 March Inday of Chamicals and Dayson 7th ad March Inc. Debuyary NII 1642 pp
1296	Merck Index. 1960. Merck Index of Chemicals and Drugs. 7th ed. Merck Inc., Rahway, NJ. 1642 pp.
1297	Mister C.N. en J.D. Haussel C.F. 1007 Distributions (11) (11) (11) (11) (11) (11)
1298	Mhatre, G.N. and Pankhurst, C.E. 1997 . Bioindicators to detect contamination of soils with special reference
1299	to heavy metals. In <i>Biological Indicators of Soil Health</i> , Pankhurst C.E., B.M Doube, V.V.Gupta, eds. CAB
1300	International, Wallingford UK.

Technical Evaluation Report

1302	MSDS-Copper Octanoate. Copper soap fungicide. Woodstream Corporation. PA.
1303	http://www.biconet.com/disease/infosheets/CopperSoapFungicide.pdf
1304	
1305	MSDS-Copper Oxychloride. Copper oxychloride. Jummel Croton Inc., NJ
1306	http://www.axxousa.com/msds/msdsp/cuoxcl_p.html
1307	
1308	MSDS-Copper Sulfate 1. CAS Registry Number: 7758-99-8. National Toxicology Program
1309	http://ntp.niehs.nih.gov/index.cfm?objectid=E882F73B-BDB5-82F8-F38750006C2E67E8
1310	
1310	MSDS-Copper Sulfate 2. Copper (II) sulfate pentahydrate. Fisher Scientific.
1311	http://avogadro.chem.iastate.edu/MSDS/CuSO4-5H2O.htm
1312	<u>nttp://avogatio.chem.nastate.edu/103D3/Cu3O4-3112O.ntm</u>
	MEDE Compar Sulfate 2. Safety data for compar (II) sulfate. Oxford University. The Division and Theoretical
1314	MSDS-Copper Sulfate 3. Safety data for copper (II) sulfate. <i>Oxford University. The Physical and Theoretical</i>
1315	Chemistry Laboratory. <u>http://msds.chem.ox.ac.uk/CO/copper_II_sulfate.html</u>
1316	
1317	Norgrove L. 2007 . Effects of different copper fungicide application rates upon earthworm activity and
1318	impacts on cocoa yield over four years. <i>Eruopean J. Soil Biol.</i> , 43, S303-S310.
1319	
1320	Obbard, J.P. and Jones, K.C. 2001. Measurement of symbiotic nitrogen-fixation in leguminous host-plants
1321	grown in heavy metal-contaminated soils amended with sewage sludge. Environmental Pollution, 111, 311-
1322	320.
1323	
1324	Ontario. 2001. Ontario Fact Sheet - Copper in the environment. Government of Ontario, Canada. Ministry fo
1325	the Environment Programs and Initiatives. <u>http://www.ene.gov.on.ca/cons/4141e.htm</u>
1326	
1327	Organic Production 1. Organic small fruit disease management guidelines – Fungicides for use in organic
1328	production systems. Ohio State University.
1329	http://www.oardc.ohio-state.edu/fruitpathology/organic/fungicidesystems.htm
1330	
1331	Organic Production 2. Integrated management of grape diseases. Ohio State University.
1332	http://www.oardc.ohio-state.edu/fruitpathology/organic/grape/organic.html
1333	
1334	Peel MD. 1998 . Crop rotations for increased productivity. North Dakota State University.
1335	http://www.ag.ndsu.edu/pubs/plantsci/crops/eb48-1.htm
1336	
1337	Piatak NM, Seal II RR, Hammarstrom JM, Kiah RG, Deacon JR, Adams M, Anthony MW, Briggs PH and
1338	Jackson JC. 2007. Geochemical characterization of mine waste, mine drainage, and stream sediments at the
1339	Pike Hill copper mine superfund site, Orange County, Vermont. U.S. Department of the Interior, U.S.
1340	Geological Survey. Scientific Investigation Report. 2006-5303.
1341	
1342	Preddice TL. 2009. New York State Fish Minorities, 2009 – A summary report for fishery managers, staff &
1343	administrators. Ney York State Department of Environmental Conservation. Albany, New York.
1344	http://www.dec.ny.gov/docs/fish_marine_pdf/fishkills2009.pdf
1345	<u>http://www.dcc.ny.gov/docs/hsit_hunic_pu/hsikins2009.pur</u>
1346	RED-Cu. 2009. Reregistration eligibility decision (RED) for coppers. U.S. EPA, May 2009
1340	http://nepis.epa.gov - enter search terms : RED Copper 2009
1347	<u>mtp.//nepis.epa.gov</u> - enter search ternis . KED Copper 2009
	Poddy M.B. Lamook D. and Pozonia. M.E. 1090. Untake and distribution of comparend ring by contact
1349	Reddy, M.R., Lameck, D. and Rezania, M.E. 1989 . Uptake and distribution of copper and zinc by soybean
1350	and corn from soil treated with sewage sludge. <i>Plant and Soil</i> , 113, 271-274.
1351	Paker C and Cabinsitt M 2000. Common for mon and atting University of Minnesster U.I. 2000.
1352	Rehm G and Schimitt M. 2009 . Copper for crop production. University of Minnesota. July 2009
1353	http://www.extension.umn.edu/distribution/cropsystems/DC6790.html
1354	

1355 1356	Reinecke AJ, Reinecke SA and Lambrechts H. 1997 . Uptake and toxicity of copper and zinc for the African earthworm, <i>Eudrilus eugeniae</i> (Oligochaeta). <i>Biol. Fert. Soils</i> , 24, 27-31.
1357	
1358 1359	Schulte, E. E., Kelling, K.A., 1999 . Soil and Applied Copper. <i>University of Wisconcin-Extension</i> , A2527. http://www.soils.wisc.edu/extension/pubs/A2527.pdf
	<u>Intp://www.sons.wisc.edu/extension/pubs/A2527.pur</u>
1360 1361	Schwaillier P. 2006. Control of apple scab and fire blight. Michigan State University.
1362	http://www.organicfruit.msu.edu/objectives.htm
1363	
1364 1365	Sittig, 1980 . Pesticide Manufacturing and Toxic Materials Control Encyclopedia. <i>Noyes Data Corp.</i> , Park Ridge NJ.
1366	
1367 1368	Soil Association-Information Sheet. Pestcides and organic farming – a last resort. <i>Soil Association – Organic Standard.</i>
1369	http://www.usaid.gov/our_work/environment/compliance/ane/workshops/Jordan2007/day3/Q/Pesti
1370	<u>cidesOrganicLastResort.pdf</u>
1371	
1372	Stehouwer R and Roth G. 2004. Copper sulfate hoof baths and copper toxicity in soil. <i>PennState-College of</i>
1373	Agricultural Sciences. <u>http://www.das.psu.edu/news/dd200403-03</u>
1374	
1375	Sullivan, P. 2004. Sustainable management of soil-borne plant diseases. National Sustainable Agriculture
1376	Information Service. http://www.attra.org/attra-pub/soilborne.html
1377	
1378	Swift CE, Hammon R and Larsen HG. 2007. Backyard orchard: Apples and pears. Colorado State University-
1379	Extension. http://www.ext.colostate.edu/pubs/garden/02800.html
1380	Zindistoni <u>intpi// introductional pubbly Surveri ozooonnini</u>
1381	US EPA-Copper Octanoate. Pestcide Fact Sheet - Copper Octanoate. US EPA-Office of Prevention, Pesticide
1381	and Toxic Substances (7501C).
	and Toxic Substances (7501C).
1383	LICEDA IDM Internet al most many (IDM) and sinciples LLC Environmental Destruction Assessed
1384	US EPA-IPM. Integrated pest management (IPM) principles. U.S. Environmental Protection Agency.
1385	http://www.epa.gov/pesticides/factsheets/ipm.htm
1386	
1387	Valenzuela H. 2010. Earthworms in the farm. University of Hawaii at Manoa.
1388	http://www.ctahr.hawaii.edu/sustainag/news/articles/V5-Valenzuela-worm.pdf
1389	
1390	Van-Zwieten L, Merrington G and Van-Zwieten M. 2004. Review of impacts on soil biota caused by copper
1391	residues from fungicide application. Super Soil 2004. 3rd Australian New Zealand Soils Conference. University
1392	of Sydney, Australia. http://www.regional.org.au/au/asssi/supersoil2004/s3/oral/1573_vanzwieten.htm
1393	
1394	Vegetable-IPM. Database of IPM resources (DIR) – Vegetable IPM. Oregon State University. Integrated Plant
1395	Protection Center. http://ipmnet.org/cicp/vegetable/vegindex.htm
1396	
1397	Yonekura, M. 1979. Biological control of weeds by tadpole shrimps in paddy field - weed efficacy of
1398	tadpole shrimps in transplanted rice fields. Weed-Research-Japan, 24, 64-68.
1399	
1400	Woody CA. 2007. Copper – Effects on freshwater food chains and salmon: A review. Fisheries Research
1401	and Consulting. http://www.fish4thefuture.com/pdfs/Woody_Copper_Effects_to_Fish%20-
1402	%20FINAL2007.pdf
1403	
1404	Wurts WA. Update: Use of bluestone (copper sulfate) for algae control. Kentucky State University.
1405	Cooperative Extension Program. <u>http://www.ca.uky.edu/wkrec/bluestone.pdf</u>
1406	
100	